EGC442 Class Notes 5/2/2023

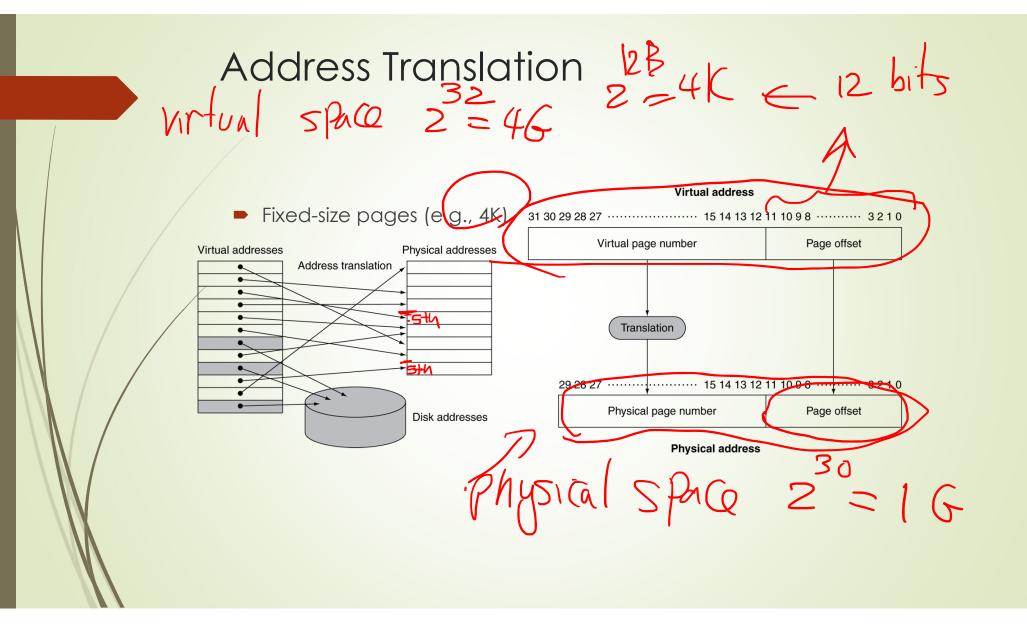
Baback Izadi Division of Engineering Programs bai@engr.newpaltz.edu

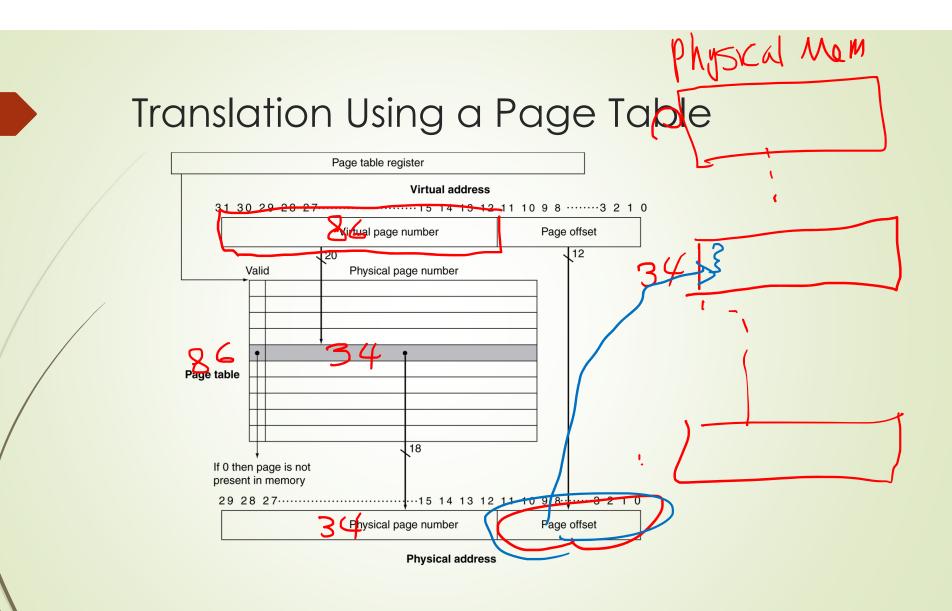
Required design documentation for the Project

1. Register file: With appropriate detail, show the layout of the register file.

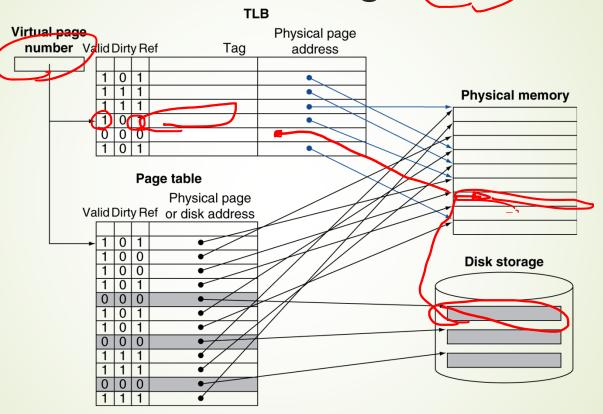
2. ALU: You need to show a detailed design of an ALU to support the following instructions: Table 4: Instruction set for required design

- **1. Data Path:** Show the data path of each class of instruction as well as the overall data path per Table 4.
 - **a.** Control: Develop the control logic to support your instructions. Gate level design in not necessary.
 - However, functional table needs be very detailed and clear, making it implementable in an FPGA.

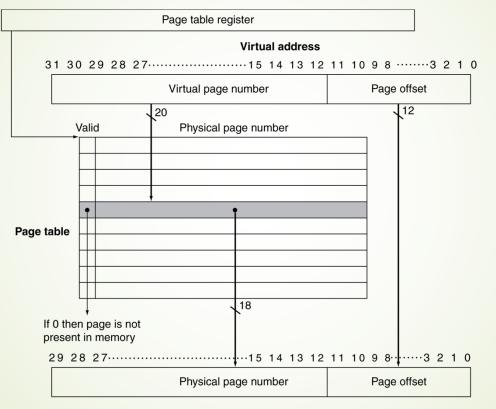

2. Pipelined Data Path: Show the data path for the pipelined architecture.

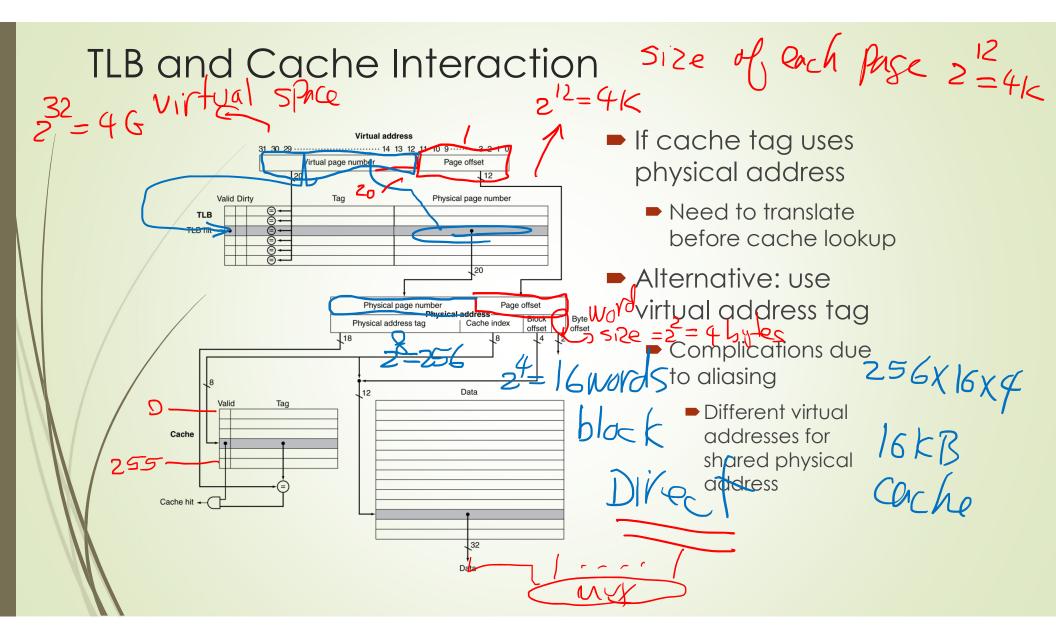

Extra Credits (20 Points):

Note: Extra Points are only considered if the processor design is over 80% correct.


Either Verilog code or a schematic capture of the ALU is needed. Documentation should include two simulation cases for each ALU operation.

Score /Max		Instruction	Operation	ALU function
	Point	LDUR	load register	add
Register File	9/10	CTUD		- 11
ALU Design	13/15	STUR	store register	add
Data Path	27/30	CBZ	Conditional branch on zero	pass input b
Control	15/15	CD) 17		
Pipelined Data Path	14/15	CBNZ	Conditional branch on not zero	pass input b
English	14/15	В	Unconditional branch	
TurnItIn similarity negative score	0	В	Unconditional branch	
Total	92/100	R-type	add	add
Extra Credits	/20	it type		
Total Course Project	92/100		subtract	subtract
Applicability for Design Folder:			AND	AND
	X Yes			
	No		ORR	OR




Fast Translation Using a TLB

Translation Using a Page Table

Physical address

1) A virtual machine (VM) is an emulation that provides a hardware interface.

O True

- False
- A system VM allows a computer to share hardware resources amongst multiple operating systems.

🖲 True

O False

 When a computer runs multiple VMs, the first VM launched is called the host, and the other VMs are called the guests.

O True

- False
- 4) Another name for a VMM is a hypervisor.

🖲 True

O False

5) A VMM is the same size as the corresponding OS.

O True

- 🖲 False
- A VMM should not allow a guest VM to change how resources are allocated.
 - 🖲 True
 - O False

 \overline{Z}) A VMM runs in system mode, while a guest VM runs in user mode.

- True
- O False

Correct

A virtual machine is an emulation that provides a *software* interface.

Correct

If a computer is running copies of many different operating systems (OSes) using VMs, each OS needs to use the hardware resources.

Correct

The computer hardware running the VMs is the host, and the VMs are the guests.

Correct

The VMM (virtual machine monitor) or hypervisor is the software the supports virtual machines. The VMM determines how to map the VMs' virtual resources to physical hardware resources.

Correct

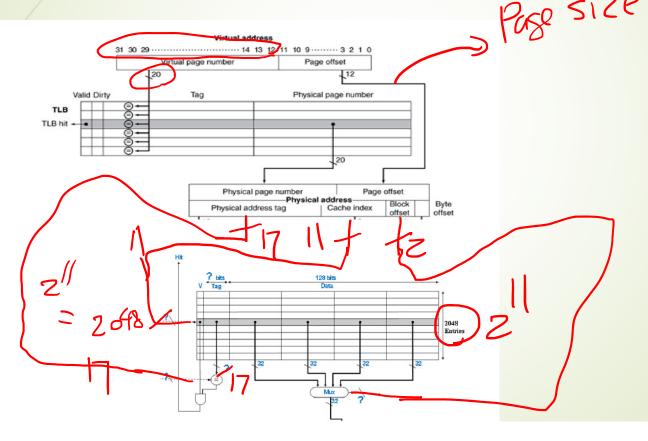
The VMM is a reduced version of a full OS.

Correct

A VMM should also run a guest VM as if the VM is on the native hardware.

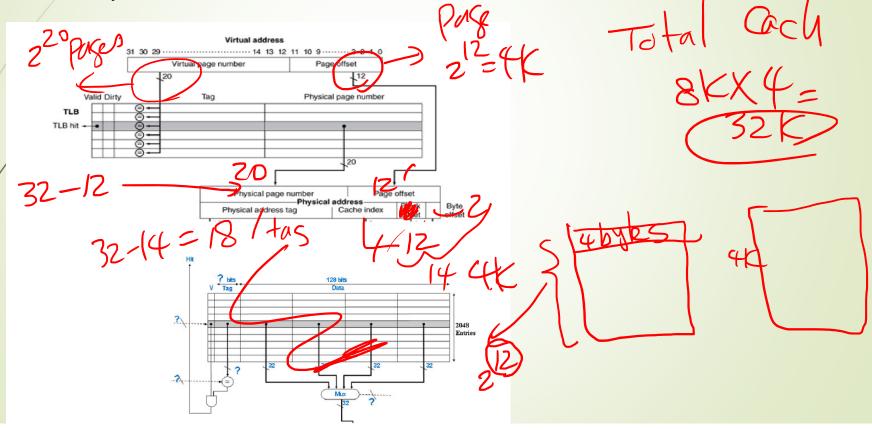
Correct

The VMM must have a higher privilege level than a guest VM. System mode provides a more privileged set of instructions that can be used to control all system resources.

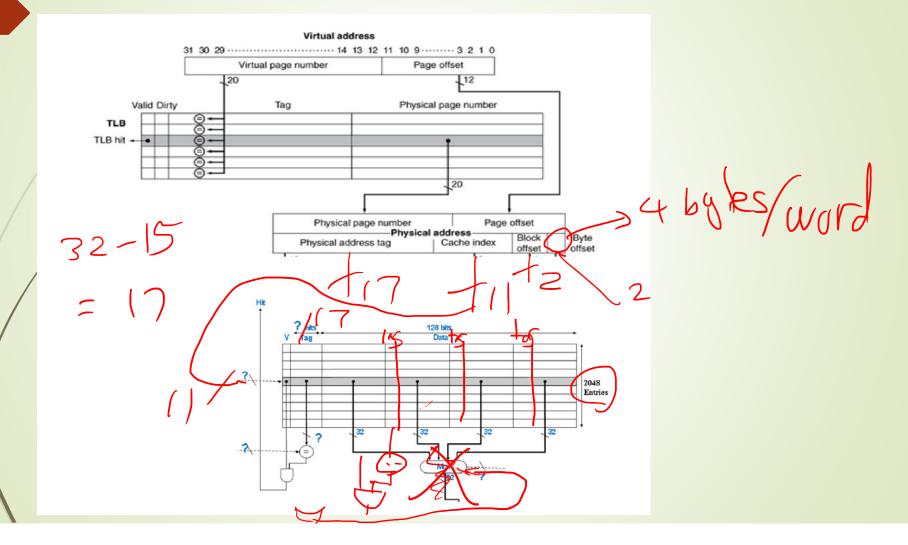

Protection	Mechanisms that prevent multiple processes that use the same hardware from interfering with each other.	Corre
	One such mechanism is the translation of a program's address space to a physical address accessible only to this program.	
Virtual memory	A technique where main memory is used as a cache for secondary storage.	Corre
	Virtual memory is used to safely share memory amongst programs and remove the burdens related to the limited size of main memory.	
Address mapping	The process of mapping a virtual address to a physical address.	Corre
	Address mapping is also called address translation. The physical address may map to a location in main memory or disk.	
Virtual address	An address that corresponds to a location in virtual space.	Corr
	Address mapping assigns a virtual address to a physical address when memory is accessed. Multiple virtual addresses can be mapped to a single physical address.	
Page fault	A virtual memory miss.	Corre
	A page fault occurs when an accessed page is not in main memory.	

 In a virtual memory system, an is to is to individual word entire page entire page A bit indicates if a page has been with memory. dirty use 		Correct Writes can take millions of processor clock cycles, so copying back an entire page is more efficient than writing individual words back to the disk. Correct A dirty bit is set when any word in a page is written and indicates if a page needs to be copied back when the page is replaced. Alternatively, a reference bit or use bit is set when a page is accessed, regardless of whether the	
cache	of recently used translations	page is written to, to indicate if the page was touched during a particular time period and is a good candidate for replacement.	Correct
	The TLB allows the processor to avoid accessing the page table, which is located in memory.		
status bits	Each TLB entry includes the physical page address, tag, and The TLB, rather than the page table, is accessed for every reference. Thus, the TLB must similarly include a valid, reference, and dirty bit.		
fewer	A TLB has number of entries as a page table. A TLB has many fewer entries than a page table, relying on locality of reference to improve access performance.		
write-back		g a scheme. need to be copied back to the page table entry when e bits are the only portion of the TLB entry that can be	Correct

The the following TLB, virtual memory system, and cache miss combinations possible or impossible?	
TLB hit, page table miss, cache miss Correct	
O Possible A TLB translation cannot occur if the page is not in	
Impossible memory.	
TLB miss, page table miss, cache hit	
O Possible Data cannot exist in a cache if the page is not in memory.	
TLB hit, page table hit, cache miss	
Possible	
O Impossible Though possible, the page table will not be checked if there is a TLB hit.	
TLB hit, page table miss, cache hit	
O Possible	
A TLB translation cannot occur if the page is not in memory.	
13 memory.	
A cache for a cache.	
	Correct
L1 cache L1 cache, known as the primary cache, can be used as a cache for the L2 cache if the L2 exists.	
LZ EXISIS.	l
A cache for main memory.	Correct
L2 cache The L2 cache is faster than main memory, but tends to be larger and slower than the L1	
cache.	
A cache for disks.	Correct
Main memory The virtual memory technique uses main memory as a cache for data on disks.	
	U n
A cache for page table entries.	Correct
TLB The translation look-aside buffer stores recent address mappings to avoid page table	
nie danosta od obie odnej od obie od obie od obie od obie od obie page dane	


14) The figure below depicts the memory system.

- > Page SIZE = 2/2=4/C how many bits is each connection.



14) The figure below depicts the memory system.

- a. What is the function of TLB?
- b. How many virtual pages numbers does the system have and how many bytes is each page?
- c. Identify type of cache architecture
- d. Complete the cache architecture by connecting the dash lines to appropriate physical address. Identify how many bits is each connection.

- 14) The figure below depicts the memory system.
- a. Modify it for 4 way associative cache.

